ICS-SEA: Formally Modeling the Conflicting Design Constraints in ICS

Eyasu Getahun Chekole, Huaqun Guo

Institute for Infocomm Research (I^2R) , A*STAR, Singapore

The 5th Industrial Control System Security Workshop (ICSS'19) (Co-located with ACSAC'19)

San Juan, Puerto Rico, USA

10 December 2019

ICSS2019

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Background

- Overview of ICS
- The ICS Design Constraints
- Security
- Efficiency
- Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability
- Security Solutions Under Test
 - ASan
 - CIMA
 - 2FA
 - LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

Overview of ICS

Outline

BackgroundOverview of ICS

- The ICS Design Constraints
- Security
- Efficiency
- Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability
- Security Solutions Under Test
 - ASan
 - CIMA
 - 2FA
 - LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

Industrial Control Systems (ICS)

- An automatic control of industrial processes: *smart grids*, *manufacturing*, *healthcare*, *water treatment*, *transportation*, etc.
- Physical processes integrated with computations via networks.

Eyasu G. Chekole $(I^2 R)$

ICSS2019

ICS abstraction

• ICS model with linear-time invariant

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t \\ y_t &= Cx_t \end{aligned}$$

• Time is discretized. A, B and C are constant matrices.

IT Vs OT

- Unlike IT, ICS (OT)
 - Have long life cycle (15 20 years).
 - Contains *resource-constrained devices*, e.g. PLCs, Sensors, Actuators.
 - Are constrained with *hard real-time* requirements.
 - The security priority is Availability, Integrity and Confidentiality.

- 1) Bac
 - Overview of ICS

2 The ICS Design Constraints

- Security
- Efficiency
- Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability
- Security Solutions Under Test
 - ASan
 - CIMA
 - 2FA
 - LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

イロト イ理ト イヨト イヨト

The conflicting design constraints in ICS

- Security
- Efficiency
- Availability/Resilience

Background
 Overview of ICS

2 The ICS Design Constraints

- Security
- Efficiency
- Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability
- Security Solutions Under Test
 - ASan
 - CIMA
 - 2FA
 - LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

Security

Security

- Network-level attacks
 - Man-in-the-middle attacks
 - Reply attacks
 - Dos/DDoS attacks
- System-level attacks
 - Memory-safety attacks
 - Side-channel attacks
 - Malware/Virus
- So, *Security* is a critical concern in ICS.

< 47 ▶

• Overview of ICS

2 The ICS Design Constraints

- Security
- Efficiency
- Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability
- Security Solutions Under Test
 - ASan
 - CIMA
 - 2FA
 - LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

Efficiency

- Most security solutions introduce high runtime overheads
 - Cryptographic solutions
 - Machine-learning based solutions
 - Memory-safety solutions
 - Intrusion detection systems
 - Etc.
- These overheads can cause delays (say δ) at runtime.

Efficiency

Efficiency

- ICS devices, e.g. PLCs, have limited computational power!
- ICS are highly delay-sensitive systems
 - PLCs have hard real-time constraints.
 - Communications are synchronized by system time.
- Failing to meet the real-time constraints could lead to,
 - Disruption of the control system
 - Damage to the physical plant
- Thus, *Efficiency* is a critical concern in ICS!!

• Overview of ICS

2 The ICS Design Constraints

- Security
- Efficiency
- Availability

Modeling the ICS Design Constraints

- Efficiency
- Availability

- ASan
- CIMA
- 2FA
- LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

- System unavailability could happen due to,
 - **②** A service delay due to a security overhead (i.e. δ).
 - The system is down for some reason, e.g., the system is restarted/ aborted to mitigate an attack or it is compromised by an attack.

• System *unavailability* is a critical concern in ICS, as it leads the control system to unsafe state.

(日) (四) (日) (日) (日)

• System *unavailability* is a critical concern in ICS, as it leads the control system to unsafe state.

In ICS, *Security*, *Efficiency* and *Availability* are equally important!

ヨト・イヨト

<<p>(日)

The research problem

- What overhead is considered to be tolerable (efficient) and how it can be quantified?
- What level of unavailability is still acceptable with respect to the process dynamics in ICS? How can we quantify that?
- How can we address the SEA tradeoffs in ICS?

- D Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability

Modeling the ICS Design Constraints

- Efficiency
- Availability

- ASan
- CIMA
- 2FA
- LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

Modeling the ICS design constraints

- In this work, we model:
 - *Efficiency* based on *real-time constraints* (RTC) in ICS.
 - Availability based on physical-state resiliency (PSR) in ICS.

(日) (四) (日) (日) (日)

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability

3 Modeling the ICS Design Constraints

- Efficiency
- Availability

- ASan
- CIMA
- 2FA
- LCDA

```
Experimental Design and Evaluation
```

- Experimental Design
- Evaluation

Modeling the real-time constraints

- *Scan cycle*: input scan + logic exec. + output update.
- Scan time (T_s) : time taken to complete the PLC scan cycle.
- Cycle time (T_c) : an upper bound the PLC scan time.

• The *real-time constraint* of the PLC is $T_s \leq T_c$.

Modeling the real-time constraints

• The *real-time constraint* of the PLC is $T_s \leq T_c$.

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Quantifying tolerability of an overhead

Figure 3: The PLC scan cycle

Outline

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability

3

Modeling the ICS Design Constraints

- Efficiency
- Availability

- ASan
- CIMA
- 2FA
- LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

• Delay in control input could disrupt the ICS dynamics.

• • • • • • • • • • • •

• Delay in control input could disrupt the ICS dynamics.

Eyasu G. Chekole $(I^2 R)$

▲ ▲□ ▶

- N

• Delay in control input could disrupt the ICS dynamics.

The delay (i.e. δ) could happen when,
T'_s > T_c (i.e. due to overhead) => δ = T'_s - T_c.
The PLC is down for some reason => δ = ∞.

Eyasu G. Chekole $(I^2 R)$

• Under what level of delay is the ICS still stable?

Image: A mathematical states and a mathem

- Under what level of delay is the ICS still stable?
- State estimation of the plant at time t is,

 $\begin{aligned} x_{t+1} &= Ax_t + Bu_t, \text{ without delay.} \\ x_{t+1}' &= Ax_t + Bu_{t-1}\llbracket t, t+\tau \rrbracket, \text{ with delay } \tau. \end{aligned}$

- Under what level of delay is the ICS still stable?
- State estimation of the plant at time t is,

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t, \text{ without delay.} \\ x'_{t+1} &= Ax_t + Bu_{t-1}\llbracket t, t + \tau \rrbracket, \text{ with delay } \tau. \end{aligned}$$

- Suppose ω and θ are the upper and lower bounds of x_t .
- The control-loop is stable (with delay $\tau)$ if the following holds: $\theta \leq x'_{t+1} \leq \omega$

$$\theta \le Ax_t + Bu_{t-1}\llbracket t, t+\tau \rrbracket \le \omega$$

Our recommendation

• To set RTC and PSR as a runtime safety properties in ICS.

- To be checked at runtime.
- to raise alarm in case of violation.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability
- B Modeling the ICS Design Constraints
 - Efficiency
 - Availability

Security Solutions Under Test

- ASan
- CIMA
- 2FA
- LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

Testing security solutions

- Memory-safety solutions
 - ASan
 - CIMA
- Cryptographic solutions
 - 2FA
 - LCDA
Overview of memory-safety attacks

- C/C++ languages are vulnerable to memory-safety bugs.
 - Buffer over/underflows
 - Dangling pointers
 - Memory leaks, etc
- Compilers do not have inherent safety/security checks.

Figure 4: Unsafe compilation

• Unsafe binaries lead to *runtime crashes* or *cyber attacks*.

ICSS2019

```
foo(){
    char buffer[16];
    printf("Insert input: ");
    gets(buffer);
}
```

・ロト ・ 同ト ・ ヨト ・ ヨト

Memory Addresses

Figure 5: The memory layout

Eyasu G. Chekole $(I^2 R)$

ICSS2019

10 December 2019 21

・ロト ・ 同ト ・ ヨト ・ ヨト

```
foo(){
    char buffer[16];
    printf("Insert input: ");
    gets(buffer);
}
```

3

(日) (四) (日) (日) (日)

```
foo(){
    char buffer[16];
    printf("Insert input: ");
    gets(buffer);
}
```

Attacker input buffer

Memory Addresses

Figure 6: Overflowing the buffer

Eyasu G. Chekole $(I^2 R)$

ICSS2019

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Memory-safety attacks exploitation

```
foo(){
    char buffer[16];
    printf("Insert input: ");
    gets(buffer);
}
```

• Create a tailored input: overwrite EIP with known address.

Memory Addresses

Figure 7: Overwrite EIP with crafted input

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Memory-safety attacks exploitation

```
foo(){
    char buffer[16];
    printf("Insert input: ");
    gets(buffer);
}
```

• Divert control to the new address (hijack control flow)

Memory Addresses

Figure 7: Diverting control to the injected code or existing module

Eyasu G. Chekole $(I^2 R)$

Outline

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability
- ³ Modeling the ICS Design Constraints
 - Efficiency
 - Availability

Security Solutions Under Test

- ASan
- CIMA
- 2FA
- LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

Overview of ASan

- ASan is a memory-safety tool based on,
 - Compile-time code instrumentation.
 - Shadow memory mapping.
 - Creating poisoned regions, aka redzones.

< 4 ₽ × <

Image source: Mike Swingler, Anna Zaks. "Advanced Debugging and the Address Sanitizer", WWDC15, Apple Inc. < 口 > < 同 > < 三 > < 三

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Process memory

Shadow memory

・ロト ・ 同ト ・ ヨト ・ ヨト

Eyasu G. Chekole $(I^2 R)$

if (IsPoisoned(P)) **Crash: *P = 0xd00;**

Process memory

Shadow memory

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- B

if (IsPoisoned(P)) **Crash: *P** = 0xd00;

Eyasu G. Chekole $(I^2 R)$

ICSS2019

if (IsPoisoned(P)) Crash; ***P = 0xd00**;

if (IsPoisoned(P)) Crash; ***P** = 0xd00;

Process memory

Shadow memory

Image: A marked and A marked

- B

if (IsPoisoned(P)) **Crash: *P = 0xd00;**

Eyasu G. Chekole $(I^2 R)$

ICSS2019

if (IsPoisoned(P)) Crash; ***P = 0xd00;**

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Outline

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability
- B Modeling the ICS Design Constraints
 - Efficiency
 - Availability

Security Solutions Under Test

- ASan
- CIMA
- 2FA
- LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

Overview of CIMA

- We developed CIMA to solve the mitigation limitation of ASan.
- CIMA: Countering Illegal Memory Accesses at runtime
- It is a *light-weight*, *efficient* and *proactive* mitigation strategy against memory-safety attacks.

CIMA

Approach of CIMA

• Based on *bypassing* illegal memory access instructions.

3

イロト イポト イヨト イヨト

CIMA

Approach of CIMA

• Based on *bypassing* illegal memory access instructions.

if (IsPoisoned(P)) Crash; *P = 0xd00:

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Approach of CIMA

• Based on *bypassing* illegal memory access instructions.

if (IsPoisoned(P)) Crash;

*P = 0xd00;

Eyasu G. Chekole $(I^2 R)$

CIMA

Approach of CIMA

• Based on *bypassing* illegal memory access instructions.

if (IsPoisoned(P)) **TargetInstruction; *P = 0xd00;**

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Approach of CIMA

• Based on *bypassing* illegal memory access instructions.

Eyasu G. Chekole $(I^2 R)$

Outline

- 1 Background
 - Overview of ICS

The ICS Design Constraints

- Security
- Efficiency
- Availability
- B Modeling the ICS Design Constraints
 - Efficiency
 - Availability

Security Solutions Under Test

- ASan
- CIMA
- 2FA
- LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

・ロト ・ 同ト ・ ヨト ・ ヨト

2FA: two-factor authentication

- 2FA¹ is a secure communication protocol based on two-factor authentication.
- Historical data from a server is used as a second factor, in addition to a secret key, to authenticate a server communicating with PLCs.
- Developed for a Metro Control system.
- Experimented on SecUTS testbed.
- Its overhead on PLCs is measured.
- No mitigation strategy involved.

Eyasu G. Chekole $(I^2 R)$

¹H. Guo, E. W. R. Tan, L. Zhou, Z. Zhao, X. Yu. 2FA Communication Protocol to Secure Metro Control Devices. In The IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand. 2019

Outline

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability
- B) Modeling the ICS Design Constraints
 - Efficiency
 - Availability

Security Solutions Under Test

- ASan
- CIMA
- 2FA
- LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

LCDA: legacy-compliant data authentication

- LCDA² is a cryptographic authentication method developed for an ICS.
- Designed to verify authenticity of communication between PLCs in ICS.
- Symmetric and asymmetric signature algorithms were benchmarked for a variety of hardware platforms.
- Experimented on SWaT testbed.
- Its overhead on PLCs is measured.
- No mitigation strategy involved.

Eyasu G. Chekole $(I^2 R)$

Outline

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability
- Security Solutions Under Test
 - ASan
 - CIMA
 - 2FA

5

• LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

Eyasu G. Chekole $(I^2 R)$

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability

- ASan
- CIMA
- 2FA

5

• LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

Experimental design

- We designed our experiments based on two ICS testbeds:
 - Secure Water Treatment (SWaT)³ Testbed
 - Secure Urban Transportation System (SecUTS)

Overview of SWaT

• **SWaT**: a secure water treatment plant at SUTD.

- B

Image: A marked and A marked

Overview of SWaT

• **SWaT**: a secure water treatment plant at SUTD.

Figure 8: SWaT

Eyasu G. Chekole $(I^2 R)$

ICSS2019
Architecture of SWaT

• Has 6 distinct processes controlled by 6 PLCs.

Figure 9: SWaT architecture

Eyasu G. Chekole $(I^2 R)$

ICSS2019

The purification process of SWaT

Figure 10: A six sage water purification process

Eyasu G. Chekole $(I^2 R)$

ICSS2019

10 December 2019 33

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Water inflow process (P1)

The Open-SWaT design

- The PLCs in SWaT and SecUTS are closed source.
- Thus, we designed Open-SWaT and Open-SecUTS testbeds by mimicking SWaT and SecUTS, respectively.

Figure 13: Architecture of Open-SWaT

Eyasu G. Chekole $(I^2 R)$

Open-SWaT details

- Detailed profiles of the testbed.
 - Hosted on Raspberry PI
 - Processor speed: 200MHz
 - *Controller*: OpenPLC
 - Cycle time: 10MS
 - PLC program complexity: 129 instructions
 - Number of connections: 7
 - Communication frequency: 10MS
 - *I/O terminal*: Arduino
 - Digital inputs: 32
 - Digital outputs: 16
 - Analog inputs: 13
 - SCADA system: ScadaBR

- 4 目 ト - 4 目 ト

Sec UTS

- The Secure Urban Transportation System (SecUTS) is an ICS testbed designed to monitor a Metro SCADA system.
- It comprises an Integrated Supervisory Control and a train signaling system.
- Consists of:
 - 6 digital inputs (emergency and control buttons)
 - 9 digital outputs (tunnel and station lightings, ventilators and alarms)
 - The scan cycle is 30ms.

Outline

- 1) Background
 - Overview of ICS
 - The ICS Design Constraints
 - Security
 - Efficiency
 - Availability
- 3 Modeling the ICS Design Constraints
 - Efficiency
 - Availability

- ASan
- CIMA
- 2FA

5

• LCDA

Experimental Design and Evaluation

- Experimental Design
- Evaluation

Eyasu G. Chekole $(I^2 R)$

Evaluating the tools

- We evaluate the tools along three directions:
 - Security guarantee (omited for this presentation!)
 - Efficiency
 - Availability/Resilience

(日) (四) (日) (日) (日)

Evaluation

ASan: Efficiency

Table 1: Memory-safety overheads of ASan (Open-SWaT)

Operations	Number	Network	CPU speed	Original (T_s)		ASan (\hat{T}_s)			
	of cycles	devices	(in MHz)	Mean	Max	Mean	Max	MSO	MSO
				$(in \ \mu s)$	$(in \ \mu s)$	$(in \ \mu s)$	$(in \ \mu s)$	$(in \ \mu s)$	(in %)
Input scan	50000	6	200	59.38	788.12	118.44	1132.32	59.09	99.46
Program execution	50000	6	200	69.09	611.82	115.88	720.36	46.79	67.72
Output update	50000	6	200	145.01	981.09	185.37	1125.45	40.36	27.83
Full scan time	50000	6	200	273.48	2381.03	419.69	2978.13	146.21	53.46

Eyasu G. Chekole $(I^2 R)$

ICSS2019

- B

• • • • • • • • • • • •

ASan: Efficiency

Eyasu G. Chekole $(I^2 R)$

ICSS2019

ASan: Efficiency

ASan: Availability/Resilience

- ASan doesn't ensure PSR in the presence of memory-safety attacks, because,
 - It simply aborts the program when a memory-safety attack is detected, hence, $\delta = \infty$.
- We proposed CIMA to overcome this problem.

CIMA: Efficiency

Table 1: Memory-safety overheads ASan + CIMA (Open-SWaT)

Operations	Number	Network	CPU speed	Original (T_s)		ASan + CIMA (\hat{T}'_s)			
	of cycles	devices	(in MHz)	Mean	Max	Mean	Max	MSO	MSO
				$(in \ \mu s)$	(in µs)	(in µs)	(in µs)	$(in \ \mu s)$	(in %)
Input scan	50000	6	200	59.38	788.12	122.86	1151.35	63.48	106.9
Program execution	50000	6	200	69.09	611.82	118.97	802.18	49.88	72.2
Output update	50000	6	200	145.01	981.09	199.89	1213.62	54.88	37.85
Full scan time	50000	6	200	273.48	2381.03	441.72	3167.15	168.24	61.52

Eyasu G. Chekole $(I^2 R)$

ICSS2019

10 December 2019 41

- B

• • • • • • • • • • • •

CIMA: Efficiency

Eyasu G. Chekole $(I^2 R)$

CIMA: Efficiency

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Breakdown of the overhead

- ASan: 53.46%
- CIMA: 8.06%
- Overall overhead: 61.52%

(日) (四) (日) (日) (日)

CIMA: Availability/Resilience

- CIMA ensures physical-state resiliency of the ICS even under the presence of memory-safety attacks, because,
 - (2) The overall overhead is tolerable, i.e. $T'_s < T_c$.
 - ② CIMA doesn't abort the victim program.
 - Thus, $\delta = 0!$

Evaluation

2FA: Efficiency

- 2FA introduced an overhead ranging from 18 to 26ms when tested on different number of historical data.
- It is tolerable since the T_c of SecUTS is 30ms, i.e. $T'_s < T_c$.

・ロト ・ 同ト ・ ヨト ・ ヨト

2FA: Availability/Resilience

- $T'_s < T_c$, i.e. $\delta = 0$.
- 2FA doesn't restart or abor the system, thus $\delta=0$ again.
- Therefore, 2FA doesn't violate the PSR.

LCDA: Efficiency

• T'_s is tolerable in some platforms and not in others.

J. H. Castellanos, D. Antonioli, N. O. Tippenhauer, M. Ochoa. Legacy-Compliant Data Authentication for Industrial Control System Traffic. In

Eyasu G. Chekole $(I^2 R)$

ICSS2019

Evaluation

LCDA: Availability/Resilience

- Although LCDA doesn't render system restart/abort, its overhead in some platforms could violate the PSR.
- Therefore, its efficiency and resilience is dependant on the platform used.

Conclusion

- In ICS, the hard real-time and availability requirements are equally critical as security.
- We tried to formally model this critical requirements.
- We are also intended to use these requirements as safety properties in ICS.
- We hope other researchers will also improve and use our models in the future.